platinum(III) species disappears and strongly acidic protons are generated, formed in a redox process involving oxidation of water.

Acknowledgment. We acknowledge, with thanks, financial support by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and Degussa (loan of K₂PtCl₄).

Notes

Contribution from the Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China

Homogeneous Catalytic Reduction of Nitric Oxide by Olefin in the Presence of Palladium(II) Chloride

C. H. Cheng* and K. S. Sun

Received September 20, 1989

The catalytic reduction of NO by CO, NH₃, H₂, or hydrocarbons over a heterogeneous system¹ has been investigated in an effort to find suitable ways to remove these pollutants in automobile emission. Similar attempts to reduce NO by using homogeneous catalysts also led to the development of several successful catalyst systems. To date, however, only the reduction of NO by CO²⁻⁸ and by NH₃⁹ has been reported. In the present paper, we describe the reduction of NO by olefin catalyzed by a soluble PdCl₂ system (reaction 1) under mild conditions. This

> $2NO + RCH = CH_2 \rightarrow N_2O + RCOCH_3$ (1)

catalytic reaction is the first one using hydrocarbons for NO removal homogeneously. In addition, it also appears to be a useful method for making organic carbonyl compounds from olefins.

In choosing an appropriate catalyst system for reaction 1, we were attracted to the PdCl₂-CuCl₂ system in view of the fact that PdCl₂ is known to oxidize olefin to ketone or aldehyde¹⁰ and the PdCl₂-CuCl₂ system is found to catalyze the reduction of NO by CO.5 A simple catalyst system was obtained consisting of PdCl₂ and CuCl₂ dissolved in water. The catalysis of reaction 1 takes places at ambient temperature under an initial NO pressure of

- Reviews: (a) Shelef, M. Catal. Rev.—Sci. Eng. 1975, 11, 1. (b) McCleverty, J. A. Chem. Rev. 1979, 79, 53. (c) Harrison, B.; Wyatt, M.; Gough, K. G. In Catalysis (Specialist Periodical Reports); Bond, G. C.; Webb, G., Eds.; Royal Society of Chemistry: London, 1982; Vol. 5, p 127. (d) Egelhoff, W. F., Jr. In The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis; King, D. A.; Woodruff, D. P., Eds.; Elsevier: New York, 1982; p 397.
 (a) Johnson, B. F. G.; Bhaduri, S. J. Chem. Soc., Chem. Commun.
- 1973, 650. (b) Bhaduri, S.; Johnson, B. F. G.; Savory, C. J.; Segal, J. A.; Walter, R. H. *Ibid.* 1974, 809. (c) Bhaduri, S.; Johnson, B. F. G. Transition Met. Chem. 1978, 3, 156.
- (a) Haymore, B. L.; Ibers, J. A. J. Am. Chem. Soc. 1974, 96, 3325. (b) Kaduk, J. A.; Tulip, T. H.; Budge, J. R.; Ibers, J. A. J. Mol. Catal. 1981, 12, 239.
- (a) Reed, J.; Eisenberg, R. Science 1974, 184, 568. (b) Meyer, C. D.; (4) Eisenberg, R. J. Am. Chem. Soc. 1976, 98, 1364.
- (a) Kubota, M.; Evans, K. J.; Koerntgen, C. A.; Marsters, J. C., Jr. J. (a) Rabita, M. J. Halls, N. S., Rochingell, C. A., Matslers, S. C., 1975.
 Am. Chem. Soc. 1978, 100, 342. (b) Kubota, M.; Evans, K. J.; Koerntgen, C. A; Marsters, J. C., Jr. J. Mol. Catal. 1980, 7, 481.
 Chin, C. S.; Sennett, M. S.; Wier, P. J.; Vaska, L. Inorg. Chim. Acta
 1978, 31, L443.
- (6)
- Dorfman, Y. A.; Emel'yanova, V. S.; Zhusupbekov, B. O. Kinet. Katal. 1981, 22, 375. (7)
- (8)
- (a) Fang, W. P.; Cheng, C. H. J. Chem. Soc., Chem. Commun. 1986, 503.
 (b) Sun, K. S.; Cheng, C. H. J. Am. Chem. Soc. 1988, 110, 6744.
 Naito, S.; Tamaru, K. J. Chem. Soc., Faraday Trans. 1 1982, 78, 735.
 (a) Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Ruttinger, R.; Kojer, H. Angew. Chem. 1959, 71, 176.
 (b) Smidt, J.; Hafner, W.; (10)Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, A. Angew. Chem., Int. Ed. Engl. 1962, 1, 80. (c) Jira, R.; Sedlmeier, J.; Smidt, J. Ann. Chem. 1966, 693, 99.

Supplementary Material Available: Tables of positional parameters

Figure 1. Change of compositions as a function of time for the catalytic reduction of NO by ethylene using the PdCl₂-CuCl₂-H₂O system at 19 °C: nitric oxide (\Box); ethylene (X); nitrous oxide (Δ); acetaldehyde (O).

less than 1 atm. While quantitative analysis of each component was performed on gas chromatographs, the identities of the organic products were verified by comparing their IR ¹H NMR, and mass spectra with those of authentic samples. The quantitative data of several reaction runs are summarized in Table I, and changes of reactants and products vs time for the reaction of NO with ethylene are displayed in Figure 1.

The stoichiometry for the catalysis of reaction 1 by the Pd-Cl₂-CuCl₂-H₂O system is indicated by the relative ratio of NO and olefin consumed and N₂O and carbonyl compound produced, shown in Table I. The rate of catalysis at ambient temperature corresponds to 0.384, 0.255, 0.298, and 0.190 (turnovers/h)/ palladium ion on the basis of N₂O produced for ethylene, propylene, 1-butene, 1-hexene, respectively (runs I-IV). These terminal olefins were converted exclusively to the corresponding 2-ketones. No other organic product was detected by GC. Notable here is that the reaction NO with an internal olefin such as cyclohexene is extremely slow under reaction conditions similar to those for terminal olefin. In the absence of CuCl₂, PdCl₂ in a mixture of DMSO and water (9:1 v/v) is also effective for the catalysis of reaction 1. No palladium precipitation was observed under the conditions used. Quantitative data of the reactions catalyzed by the system are shown in Table I (runs V-VIII). Surprisingly, other solvent mixtures such as acetonitrile-water and DMF-water exhibit much smaller activities for the catalysis (runs IX and X).

During the catalysis of reaction 1 by the PdCl₂-CuCl₂-H₂O system, the reaction solution exhibited an absorption at 425 nm in the UV-vis spectrum. This band is close to the absorption at 421 nm for a pure PdCl₂ solution.¹¹ There is no evidence for the coordination of olefin or NO to the palladium. To understand further the features of catalysis by $PdCl_2-CuCl_2-H_2O$, several control experiments were carried out, leading to the following observations. (i) No catalysis takes place in the absence of PdCl₂. (ii) A reaction solution with 0.59 M LiCl present has only $82\tilde{\%}$ of the catalytic activity in its absence. (iii) The presence of 0.55

⁽¹¹⁾ Sundaram, A. K.; Sandell, E. G. J. Am. Chem. Soc. 1955, 77, 855.

Table I. Results of the Catalytic Reduction of NO by Olefins"

		temp.	react consumed, mmol		product, mmol	
run	solvent	°C	NO	olefin	N ₂ O	carbonyl
I	H ₂ O	25	4.30	2.33 (ethylene)	2.17	2.08 (acetaldehyde)
H	H ₂ O	20	3.09	1.31 (propylene)	1.44	1.37 (acetone)
III	H ₂ O	24	3.71	1.68 (1-butene)	1.68	1.60 (2-butanone)
IV	H ₂ O	19	2.08	1.16 (1-hexene)	1.07	1.05 (2-hexanone)
V	DMSO/H ₂ O ^b	25	4.17	2.07 (ethylene)	1.67	1.72 (acetaldehyde)
VI	DMSO/H ₂ O ^b	20	2.15	0.82 (propylene)	0.79	0.79 (acetone)
VII	DMSO/H ₂ O ^b	24	2.73	1.17 (1-butene)	1.17	1.21 (2-butanone)
VIII	DMSO/H ₂ O ^b	19	1.80	0.92 (1-hexene)	0.83	0.80 (2-hexanone)
IX	DMF/H ₂ O ^b	27	2.98	0.94 (ethylene)	0.48	0.94 (acetaldehyde)
Х	CH ₃ CN/H ₂ O ^b	27	1.60	0.88 (ethylene)	0.38	0.87 (acetaldehyde)
XI ^c	H ₂ O ^c	25		2.62 (ethylene)		2.38 (acetaldehyde)

^a Each catalyst solution was prepared according to the procedure described in the text. Reaction time = 10 h. A systematic error of 5% is estimated for each run. ^bThe ratio of organic solvent to water is 9:1 (v/v). ^cThe reaction conditions are the same as those in run I except that NO is replaced by Ar.

M H⁺ decreases the activity to 22% of that in its absence. (iv) Omission of CuCl₂ reduces the solubility of PdCl₂ and leads to a decrease in catalytic activity and precipitation of palladium metal, but high concentrations of CuCl₂ (>0.59 M) inhibit the catalysis; e.g. at 1.17 M CuCl₂, the rate is 80% of that at 0.59 M CuCl₂. (v) In the absence of NO, the conversion of ethylene to acetaldehyde occurs at approximately the same rate as in the presence of NO (run XI).

On the basis of the foregoing observations and the established chemistry of Wacker type reactions,¹⁰ the following reactions are proposed to account for the oxidation of olefins and the reduction of NO.

$$Pd^{2+} + RCH = CH_2 + H_2O \rightarrow Pd^0 + RCOCH_3 + 2H^+$$
(2)

$$Pd^{0} + 2NO + 2H^{+} \rightarrow Pd^{2+} + N_{2}O + H_{2}O$$
 (3)

$$Pd^{0} + 2Cu^{2+} \rightarrow Pd^{2+} + 2Cu^{+}$$

$$\tag{4}$$

$$2Cu^+ + 2NO + 2H^+ \xrightarrow{Pd^{2+}} 2Cu^{2+} + N_2O + H_2O$$
 (5)

The formation of organic carbonyl compounds probably takes place via coordination of olefin, nucleophilic attack of H_2O at the olefin, and the subsequent rearrangement of the $(\beta$ -hydroxyalkyl)palladium species. An evidence for the formation of Pd⁰ species from reaction 2 is the observation of inactive palladium precipitation generated by introducing olefin into a PdCl₂-DMSO-H₂O or a PdCl₂-CuCl₂-H₂O solution. A pathway for N_2O production is likely through the oxidation of Pd⁰ by NO (reaction 3). Support for this reaction comes from the observation that PdCl₂-DMSO-H₂O effectively catalyzes reaction 1 without leading to precipitation of Pd metal. Alternatively, the Pd⁰ from reaction 2 may be oxidized by Cu²⁺ to give Pd²⁺ and Cu⁺ (reaction 4). Further reaction of Cu^+ with NO catalyzed by Pd^{2+} yields N_2O (reaction 5). This process has been verified and proposed to account for formation of N_2O in the reduction of NO by CO using $PdCl_2$ -CuCl₂.⁵ For the present $PdCl_2$ -DMSO-H₂O system, reaction 3 appears to be the only pathway for N₂O formation due to the absence of $CuCl_2$, while for the $PdCl_2-CuCl_2-H_2O$ system N₂O formation is occurring at least in part via reactions 4 and 5 in view of the observation of a Pd precipitate if $CuCl_2$ is absent during the catalysis. However, because some catalytic activity still exists in the initial period in the absence of CuCl₂, the mechanism via reaction 3 can not be excluded for the $PdCl_2$ -CuCl₂-H₂O system.

Experimental Section

Spectroscopic Measurements. NMR spectra were measured on a Varian EM-390 spectrophotometer. IR spectra were recorded on a Perkin-Elmer Model 781 instrument in 0.05-mm CaF₂ solution cells. Mass spectral data were obtained on a JEOL JGC-20K/JMS-D100 GC/MS system. Solution UV-vis spectra were measured on a Perkin-Elmer Lambda 5 spectrophotometer. Quantitative analysis of NO, N₂O, and CH₂CH₂ gases was performed on a Varian Aerograph Model 3700 gas chromatograph with TCD detector. A molecular sieve column was used for separating NO from other components, while a Porapak-Q column was employed to separate N2O or CH2CH2 from other gases." Other organic compounds were analyzed on a Shimadu Model GC-8A instrument with a FID detector. A Carbopac column (80/100) containing 0.19% picric acid was used for analyzing propene and 1-butene; a column consisting of 10% Carbowax 20 M on Chromosorb W HP (80/100) was employed for analyzing 1-hexene, 2-hexanone, acetaldehyde, acetone, and 2-butanone.

Materials. The following compounds were obtained from the indicated suppliers: $PdCl_2$ (Strem); $CuCl_2 \cdot 2H_2O$, LiCl (Merck); NO, N₂O, CH_2CH_2 , propene, 1-butene (Matheson); 1-hexane, DMSO (Aldrich); 2-butanone, 2-hexanone, acetone (Merck). All these compounds were used without further purification.

Reduction of NO by Olefin Catalyzed by PdCl₂. The reaction vessel used for the catalytic reaction was a 300-mL 24/40 single-neck roundbottomed side-arm flask. The side arm was connected to a three-way stopcock and one end attached to a vacuum pump and the other used for addition of gases or stoppered with a septum for gas sampling. To the reaction vessel was added $PdCl_2$ (0.100 g, 5.64×10^{-4} mol), $CuCl_2 \cdot 2H_2O$ $(2.00 \text{ g}, 1.17 \times 10^{-2} \text{ mol})$, and water (20.0 mL). The vessel was connected to a mercury manometer via a ground-glass adapter and was evacuated. The system was flushed once with NO and was then filled with 500 Torr of NO and 250 Torr of olefin. In the case of liquid olefin, an amount equal to 1/2 molar equiv of NO was syringed into the vessel. The solution was magnetically stirred at ambient temperature. The solution and the gas mixture were sampled and analyzed on a GC from time to time. The results are presented in Table I and in Figure 1. The organic product was separated from the solution either by distillation or by extraction with CHCl₃.

Acknowledgment. We thank the National Science Council of the Republic of China for support of this work.